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Among the most fascinating of all carbocations are those in 
which silicon is in the vicinity of the electron-deficient carbon 
atom.1 Specifically, the presence of silicon adjacent to (a) or one 
atom removed from (£) a developing carbocation center has been 
shown to result in marked changes in the solvolytic reactivities 
of appropriately substituted substrates. For example, when 
dissolved in aqueous ethanol, (H3C)3Si(CH3)2C-Br solvolyzed 
ca. 38 000 times slower than (H3C)3C(CHs)2C-Br.2 Conversely, 
when dissolved in trifluoroethanol, 2-(trimethylsilyl)cyclohexyl 
trifluoroacetate solvolyzed ca. 109 times faster than cyclohexyl 
trifluoroacetate.3 Contained in this communication are the first 
experimentally-derived thermodynamic data that enable com
parisons of the effects of a- and (3-Si(CH3)3 moieties on the free 
energies of C-H homolysis and C-H heterolysis, for variously 
substituted fluorenes dissolved in dimethyl sulfoxide (DMSO). 
Analyses of these data indicate that replacement of a 9-H atom 
in fluorene with the jS-silicon-containing 9-(trimethylsilyl)methyl 
moiety reduces the 9C-H heterolysis free energy by 16 kcal/mol. 
This and other comparisons provide a thermodynamic-based 
experimental foundation for the importance of Si+/C=C hy-
perconjugation as it pertains to solution-phase carbocation 
stabilization. 

It has been shown that insertion of selected acid-base4 and 
redox data into thermochemical cycles5 (as in eqs I6 and 27) 
results in accurate (±1-2 kcal/mol) determinations of relative 
and absolute free energies of homolysis6 [AG0I101n(R-H)] and 

AG°hom(R-H) = 1.36 p*a(R-H) + 

23.1[£NHE(R7R#)] + 57.2 kcal/mol (1) 

AG°het(R-H) = 1.36ptfa(R-H) + 

23.1[£NHE[(R7R*) + (R*/R+)]] + 69.9 kcal/mol (2) 

heterolysis7 [AG0
net(R-H)] for several classes of reactions.8 We 

have therefore endeavored to collect the p£a(R-H), £NHE(R~/ 
R'), and £ N H E ( R ' / R + ) data that enable determination of the 
AG0H01n(R-H) and AG°net(R-H) values for fluorenes 1-3 (Table 
1). This study was undertaken in efforts to examine the effects 
of a-Si(CH3)3 (as in 2b) and /3-Si(CH3)3 (as in 3b) substituents 
on the thermodynamic stabilities of solution phase anions, radicals, 
and cations derived from 1-3. The instability of the 12-7r-electron 
fluorenium cation [pK^+ = -14.09 ] acts to minimize any masking 
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of the stabilizing effects resulting from reduced-demand-associ
ated phenomena.10 

<So cpo (So 
Ia G=H 2a X=C 3a X-C 
1b G - C H 3 2b X-Si 3b X=Si 

Consider the acidity data first. The DMSO pAT.'s for 9H-
fluorene (la) and 9-(trimethylsilyl)fluorene (2b) (22.6 and 21.7, 
respectively) as well as 9-methylfluorene (lb) and 9-[(trimeth-
ylsilyl)methyl] fluorene (3b) (22.3 and 21.4, respectively) suggest 
that the presence of o-Si(CH3)3 and 0-Si(CH3)3 substituents has 
minor stabilizing effects on the anionic fluorenide moieties. While 
these results are consistent with the notion of an enhanced electron-
accepting ability for silicon atoms11 (relative to hydrogen), the 
magnitude of the differences (A pKt = 0.9) demands cautious 
interpretation. Furthermore, 9-neopentylfluorene(3a, pA, = 20.3) 
is slightly more acidic than its /3-silicon analogue, 9-[(trimeth-
ylsilyl)methyl]fluorene (3b, pA, = 21.4).12a That the presence of 
silicon results in an acid-weakening effect is not surprising in 
light of published aqueous pATa's for (CH3)3CCH2C02H (pA, = 
5.0) and (CH3J3SiCH2CO2H (p#a = 5.2).13 

Inspection of the AG°b0m(C-H) data in Table 1 reveals that 
the free energies of homolysis for the 9C-H bonds in 9H-fluorene 
(la), 9-terf-butylfluorene (2a), and 9-(trimethylsilyl)fluorene (2b) 
are nearly equal (76,76, and 75 kcal/mol, respectively). Therefore, 
relative to hydrogen (as in la) or its carbon analogue Jerf-butyl 
(as in 2a), the a-Si(CH3)3 substituent (as in 2b) has a negligible 
effect on 9C-H bond homolysis. Published gas-phase homolytic 
(enthalpic) C-H BDEs for (CHj)3CCH2-H and (CHj)3SiCH2-H 
(99M and 10015 kcal/mol, respectively) provide support for the 
general assertion that an a-Si(CH3)3 substituent provides little 
stabilization to carbon-centered radicals. Evidently, C*/Si=C 
hyperconjugation is of little value as it pertains to radical 
stabilization as measured by AG0I101n(C-H) values as well as gas-
phase BDEs. 

AGoh0m(C-H) values for 9-methylfluorene (lb), 9-neopen-
tylfluorene (3a), and 9-[(trimethylsilyl) methyl] fluorene (3b) are 
72, 70, and 69 kcal/mol, respectively. Analyses of these data 
indicate that, relative to hydrogen (as in 9/f-fluorene, la), a 
(trimethylsilyl)methyl substituent [as in 3b; i.e., one containing 
a £-Si(CH3)3 moiety] results in a substantial weakening of the 
9C-H bond (7 kcal/mol). However, the 7 kcal/mol bond-
weakening effect ascribed to the |8-Si(CH3)3 moiety in 3b is nearly 
equal to the 6 kcal/mol perturbation provided by the «eo-pentyl 
substituent in 9-neopentylfluorene (3a). AG°h0m(R-H) data for 
3a and 3b therefore suggest that the degree of stabilization 
afforded the fluorenyl radical derived from 3b via Si*/C=C 
hyperconjugation is not substantially greater than any stabilization 
provided to 3a via C*/C=C hyperconjugation. 

Further inspection of Table 1 reveals that the AG°het(R-H) 
values for 9#-fluorene (la), 9-methylfluorene (lb), 9-tert-
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Table 1. Dimethyl Sulfoxide Solution Acidity, Redox, and Free Energy Data for 9-Substituted Fluorenes 1-3 and Their Respective Conjugate 
Ions and Radicals 

AG9O1Om)(R-H)' AGV)(R-H/ 
fluorene substrate" p^«(C-H)* £NHE(R7R ,)*'C (V) £NHB (R'/R*)"^ (V) (kcal/mol) (kcal/mol) 

9/f-fluorene (la) 22.6 -0.53 0.70(0.87) 76 105 
9-methylfluorene (lb) 22.3 -0.69 0.56 72 97 
9-fert-butylfluorene (2a) 24.4 -0.62 0.63(0.79) 76 103 
9-(trimethylsilyl)fluorene (2b) 21.7 -0.52 0.66 75 103 
9-neopentylfluorene (3a) 20.3 -0.65 0.54 70 95 
9-[(trimethylsilyI)methyl]fluorene(3b) 21.4* -0.75* 0.30 69 89 

o la is commercially available, and lb, 2a,b and 3a were synthesized using published procedures.8* 9- [(Trimethylsilyl)methyl]fluorene (3b) appears 
to be a new compound and was prepared by allowing the lithium salt of fluorene to react with (iodomethyl)trirnethylsilane (1 equiv). After recrystallization 
from EtOH, 3b was obtained in 37% yield (mp 78-79 0C): 1H NMR (CDCl3) S 7.2-7.8 (m, 8H, aryl protons), 4.2 (t, IH), 1.5 (d, 2H), 0.5 (s, 9 H); 
13C NMR (CDCl3) « 149.0,140.7,126.8,126.7,124.6,119.7,44.1,19.9,-0.4. Anal. Calcd for 3b (CnH20Si): C, 80.89; H, 7.99. Found: C, 80.79; 
H, 8.00. * Literature values4'8* except where noted.c Irreversible peak potentials in which Etna = EfmxxK/fmxmimn + 0.54 V.7 * Collected using 
photomodulated voltammetric (PMV) apparatus similar to that described previously.17 Values in parentheses were collected using acetonitrile as 
solvent.7* Determined using eq I,6 estimated uncertainty ±1-2 kcal/mol. /Determined using eq 7, estimated uncertainty ±1-2 kcal/mol. * Obtained 
using previously described indicator method.4 * Electrochemical conditions described previously.18 

butylfluorene (2a), 9-(trimethylsilyl)fluorene (2b), and 9-neo
pentylfluorene (3a) are 105, 97, 105, 103, and 95 kcal/mol, 
respectively. The 0-Si(CHj)3 and a-C(CH3)3 substituents 
therefore have near-equal effects on the free energies of 9C-H 
heterolysis. However, the data suggest that the a-CH3 substituent 
present in 9-methyifluorene (lb) provides more stabilization to 
the fluorenium cation (6 kcal/mol) than does a-Si(CH3)3. These 
observations are in agreement with computational- and kinetic-
based studies from which it has been deduced that an «-CH3 
substituent stabilizes the 2-adamantyl carbocation 6-8 kcal/mol 
more than an a-Si(CH3)3 substituent.16 Hyperconjugation-based 
arguments (i.e., that R + / C = C provides greater stabilization than 
R + /S i=C hyperconjugation) are generally invoked when ratio
nalizing these and similar results. On the other hand, it has been 
asserted16 that an a-Si(CH3)3 substituent stabilizes the 2-ada
mantyl carbocation 12-14 kcal/mol more than hydrogen, results 
that are in conflict with our observations that the AChCt(R-H) 
values for 9#-fluorene (la) and 9-(trimethylsilyl)fluorene (2b) 
are 105 and 103 kcal/mol, respectively. Perhaps steric interactions 
between hydrogen atoms of the trimethylsilyl substituent and the 
1 - and 8-hydrogen atoms of the fluorene ring minimize the degree 
of substantial cation stabilization realized via C + /S i=C hyper
conjugation. 
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Finally, the AG0
het(R-H) value for a 0-silylated fluorene, 

9-[(trimethylsilyl)methyl]fluorene (3b), is also listed in Table 1. 
Comparisons of the AG°he,(R-H) values for 3b (89 kcal/mol) 
and 9//-fluorene (la, 105 kcal/mol) suggest that replacement of 
a 9-H atom in la with the CH2Si(CHj)3 moiety (as in 3b) weakens 
the 9C-H bond by 16 kcal/mol. Other appropriate comparisons 
are between the AGVt(R-H) values for 3b, 9-methylfluorene 
(lb), and 9-neopentylfluorene (3a) (89, 97, and 95 kcal/mol, 
respectively), since the cations derived from 3b, lb, and 3a are 
tertiary. Such a comparison reveals that the /3-silicon atom present 
in 3b results in an additional 6-8 kcal/mol stabilization (when 
compared to 3a and lb). The thermodynamic solution phase 
AG°i,e,(R-H) data for 1-3 are therefore in qualitative agreement 
with results from kinetic evaluations of solution-phase reactions 
thought to involve 0-silyl carbocations, as well as computational 
and experimental investigations of the effects of/3-silicon atoms 
on gas phase carbocation stabilities.16 The data provide confir
mation of the importance of S i + /C=C hyperconjugation as it 
pertains to carbocation stabilization. We are continuing our studies 
of the effects of silicon and other heteroatoms on the stabilities 
of organic reactive intermediates. 
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